Two-Level Micro-to-Nanoscale Hierarchical TiO2 Nanolayers on Titanium Surface

نویسندگان

  • Elena G. Zemtsova
  • Andrei Yu. Arbenin
  • Ruslan Z. Valiev
  • Evgeny V. Orekhov
  • Valentin G. Semenov
  • Vladimir M. Smirnov
چکیده

Joint replacement is being actively developed within modern orthopedics. One novel material providing fast implantation is bioactive coatings. The synthesis of targeted nanocoatings on metallic nanotitanium surface is reported in this paper. TiO₂-based micro- and nanocoatings were produced by sol-gel synthesis using dip-coating technology with subsequent fast (shock) drying in hot plate mode at 400 °C. As a result of shock drying, the two-level hierarchical TiO₂ nanolayer on the nanotitanium was obtained. This two-level hierarchy includes nanorelief of porous xerogel and microrelief of the micron-sized "defect" network (a crack network). The thickness of TiO₂ nanolayers was controlled by repeating dip-coating process the necessary number of times after the first layer deposition. The state of the MS3T3-E1 osteoblast cell line (young cells that form bone tissue) on the two-level hierarchical surface has been studied. Particularly, adhesion character, adhesion time and morphology have been studied. The reported results may serve the starting point for the development of novel bioactive coatings for bone and teeth implants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اثر حضور نانوخوشه‌های مس به عنوان زیرلایه بر خواص بلوری و نوری لایه دی‌اکسیدتیتانیوم

Two 10 and 20nm samples of Cu nano-cluster were grown on quartz substrates with a thickness of by electron beam deposition method. Nanolayers of titanium dioxide with a thickness of 300 nm were deposited on these Cu nano-cluster layers. For comparison، a layer of titanium dioxide with a thickness of 300 nm was also coated on quartz substrate. All coatings were conducted using electron-beam phys...

متن کامل

TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating

Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication i...

متن کامل

Effect of Nanoscale Titanium Dioxide Particles on the Germination and Growth of Canola (Brassica napus)

An investigation was initiated to examine the effects of nanoscale titanium dioxide particles on plant growth and development. In view of the widespread cultivation of canola in Iran and in other parts of the globe and in view of the potential influence of titanium on its growth, this plant was chosen as the model system. Canola seeds were separately treated with different concentrations of nan...

متن کامل

Hierarchical 3D TiO2@Fe2O3 nanoframework arrays as high-performance anode materials.

Hierarchical 3D TiO2@Fe2O3 nanoframework arrays grown on a Ti substrate are synthesized via a facile hydrothermal reaction. As the synergetic effect of this hybrid material, the TiO2@Fe2O3 electrode shows superior rate capability and cycling performance to bare TiO2 and Fe2O3 electrodes.

متن کامل

High-surface-area mesoporous TiO2 microspheres via one-step nanoparticle self-assembly for enhanced lithium-ion storage.

Mesoporous TiO2 microspheres assembled from TiO2 nanoparticles with specific surface areas as high as 150 m(2) g(-1) were synthesized via a facile one-step solvothermal reaction of titanium isopropoxide and anhydrous acetone. Aldol condensation of acetone gradually releases structural H2O, which hydrolyzes and condenses titanium isopropoxide, forming TiO2 nanocrystals. Simultaneous growth and a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016